Activation of FADD-Dependent Neuronal Death Pathways as a Predictor of Pathogenicity for LRRK2 Mutations

نویسندگان

  • Katerina Melachroinou
  • Emmanouela Leandrou
  • Polytimi-Eleni Valkimadi
  • Anna Memou
  • Georgios Hadjigeorgiou
  • Leonidas Stefanis
  • Hardy J. Rideout
چکیده

BACKGROUND Despite the plethora of sequence variants in LRRK2, only a few clearly segregate with PD. Even within this group of pathogenic mutations, the phenotypic profile can differ widely. OBJECTIVE We examined multiple properties of LRRK2 behavior in cellular models over-expressing three sequence variants described in Greek PD patients in comparison to several known pathogenic and non-pathogenic LRRK2 mutations, to determine if specific phenotypes associated with pathogenic LRRK2 can be observed in other less-common sequence variants for which pathogenicity is unclear based on clinical and/or genetic data alone. METHODS The oligomerization, activity, phosphorylation, and interaction with FADD was assessed in HEK293T cells over-expressing LRRK2; while the induction of neuronal death was determined by quantifying apoptotic nuclei in primary neurons transiently expressing LRRK2. RESULTS One LRRK2 variant, A211V, exhibited a modest increase in kinase activity, whereas only the pathogenic mutants G2019S and I2020T displayed significantly altered auto-phosphorylation. We observed an induction of detergent-insoluble high molecular weight structures upon expression of pathogenic LRRK2 mutants, but not the other LRRK2 variants. In contrast, each of the variants tested induced apoptotic death of cultured neurons similar to pathogenic LRRK2 in a FADD-dependent manner. CONCLUSIONS Overall, despite differences in some properties of LRRK2 function such as kinase activity and its oligomerization, each of the LRRK2 variants examined induced neuronal death to a similar extent. Furthermore, our findings further strengthen the notion of a convergence on the extrinsic cell death pathway common to mutations in LRRK2 that are capable of inducing neuronal death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration.

Neurodegenerative illnesses such as Parkinson and Alzheimer disease are an increasingly prevalent problem in aging societies, yet no therapies exist that retard or prevent neurodegeneration. Dominant missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD), but the mechanisms by which mutant forms of LRRK2 disrupt neuronal function a...

متن کامل

GST P1, a novel downstream regulator of LRRK2, G2019S-induced neuronal cell death.

The enhanced neurotoxicity of the Parkinson's disease-associated LRRK2 mutant, G2019S, than its wild-type counter-part has recently been reported. Overexpression of LRRK2 (G2019S) in cultured neural cells results in caspase-3-dependent apoptosis via a yet undefined signaling pathway. Elucidation of the mechanism underlying LRRK2 (G2019S) neurotoxicity may offer new insights into the pathogenesi...

متن کامل

LRRK2 in Parkinson's disease: function in cells and neurodegeneration.

The detailed characterization of the function of leucine-rich repeat kinase 2 (LRRK2) may provide insight into the molecular basis of neurodegeneration in Parkinson's disease (PD) because mutations in LRRK2 cause a phenotype with strong overlap to typical late-onset disease and LRRK2 mutations are responsible for significant proportions of PD in some populations. The complexity of large multido...

متن کامل

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synap...

متن کامل

GTPase Activity and Neuronal Toxicity of Parkinson's Disease–Associated LRRK2 Is Regulated by ArfGAP1

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016